5-Fluorouracil–1,4-dioxane (4/1)
Ashley T. Hulme and Derek A. Tocher
A solvate of 5-fluorouracil with 1,4-dioxane, \(4\text{C}_4\text{H}_5\text{FN}_2\text{O}_2\cdot\text{C}_4\text{H}_8\text{O}_2\), is reported. It crystallizes in the triclinic space group \(\text{P}\overline{1}\). Two molecules of 5-fluorouracil are present in the asymmetric unit, together with one-half molecule of 1,4-dioxane, which lies on a centre of symmetry. In the crystal structure, ribbons of 5-fluorouracil molecules are joined by 1,4-dioxane-mediated interactions, forming sheets parallel to the \((211)\) planes.

Comment

In the course of a polymorph screen performed on 5-fluorouracil, three solvates were discovered; the crystal structure of one of these solvates is reported here.

The title compound, (I), crystallizes in the space group \(\text{P}\overline{1}\) with two molecules of 5-fluorouracil and one-half molecule of 1,4-dioxane in the asymmetric unit (Fig. 1). The 1,4-dioxane molecule is located on a crystallographic centre of symmetry. Four distinct \(\text{N} \cdots \text{H} \cdots \text{O}\) hydrogen bonds occur in the crystal structure (Table 1). Both the crystallographically independent 5-fluorouracil molecules are present as centrosymmetric hydrogen-bonded dimers. One dimer contains the hydrogen bond \(\text{N}3 \cdots \text{H}3\cdots\text{O}7\cdots\) (symmetry codes are given in Table 1), with a donor–acceptor distance of 2.857 (2) Å, while the other dimer contains the hydrogen bond \(\text{N}13 \cdots \text{H}13\cdots\text{O}18\cdots\) [2.824 (2) Å]. These dimers are linked, forming ribbon-like structures, by \(\text{N}1 \cdots \text{H}1 \cdots \text{O}17\) hydrogen bonds. Adjacent
ribbons of 5-fluorouracil molecules are linked, forming sheets parallel to the (211) planes via 1,4-dioxane molecules which act as N1—H1···O21 [N···O = 2.746 (2) Å] hydrogen-bond bridges (Fig. 2).

Experimental

5-Fluorouracil was obtained from the Aldrich Chemical Company Inc. The crystals were grown by solvent evaporation of a saturated solution of 5-fluorouracil in 1,4-dioxane.

Crystal data

4C₄H₃FN₂O₂·C₄H₈O₂
Mᵣ = 608.44
Triclinic, P₁
a = 7.0847 (11) Å
b = 8.4733 (13) Å
c = 10.2291 (15) Å
α = 98.128 (3)°
β = 96.913 (3)°
γ = 99.785 (3)°
V = 592.45 (16) Å³
Z = 1
Dᵣ = 1.705 Mg m⁻³
Mo Kα radiation
θ = 2.5–26.7°
μ = 0.16 mm⁻¹
T = 150 (2) K
Plate, colourless
h = −9 to 9
k = −11 to 11
l = −13 to 13

Crystallographic data

Data collection

Bruker SMART APEX diffractometer
Narrow-frameω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
T_max = 0.995
T_min = 0.947
2741 independent reflections
2131 reflections with I > 2σ(I)
5320 measured reflections

Data reduction

Rint = 0.029
wR(F²) = 0.114
S = 1.08

Refinement

Refinement on F²
wR(F²) = 0.052
S = 1.08
2741 reflections
230 parameters
All H-atom parameters refined

Table 1

Hydrogen-bonding geometry (Å, °).

<table>
<thead>
<tr>
<th>D—H···A</th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1—H1···O17i</td>
<td>0.83 (3)</td>
<td>1.98 (3)</td>
<td>2.798 (2)</td>
<td>167 (2)</td>
</tr>
<tr>
<td>N3—H3···O10iii</td>
<td>0.91 (2)</td>
<td>1.95 (2)</td>
<td>2.857 (2)</td>
<td>176 (2)</td>
</tr>
<tr>
<td>N11—H11···O21</td>
<td>0.91 (2)</td>
<td>1.84 (2)</td>
<td>2.746 (2)</td>
<td>171 (2)</td>
</tr>
<tr>
<td>N13—H13···O18iv</td>
<td>0.85 (2)</td>
<td>1.98 (2)</td>
<td>2.824 (2)</td>
<td>175 (2)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) x, 1 + y, z; (ii) −x, 1 − y, 1 − z; (iii) 1 − x, 1 − y, 1 − z.

All H atoms were located in a difference map and were refined isotropically. C—H distances were in the range 0.93 (2)–1.00 (2) Å and N—H distances were in the range 0.83 (3)–0.91 (2) Å.

The authors acknowledge the Research Councils UK Basic Technology Programme for supporting ‘Control and Prediction of the Organic Solid State’.

References