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a b s t r a c t

Quantics is a general purpose program package to simulate the time-evolution of a molecular system by
solving the time-dependent Schrödinger equation. The main code is based on the multi-configurational
time-dependent Hartree (MCTDH) algorithm in various variants, including the powerful multilayer-
MCTDH algorithm that has been used to propagate a wavefunction for up to 1000 degrees of freedom.
MCTDH uses a contraction of traditional discrete basis set representations of the Hamiltonian and
wavefunction, and Quantics includes a range of variable representation (DVR) grid basis sets and
collocation methods. Input is via ascii text files and for molecules with analytical potential functions
no programming is required. A library of potential functions is included to treat more complicated
cases, and more functions can be added as required by the user. The code also includes the variational
multi-configurational Gaussian (vMCG) method that is based on a Gaussian wavepacket expansion
of the wavefunction. vMCG can be run in a ‘‘direct’’ manner (DD-vMCG), calculating the potential
energy surfaces on-the-fly using a number of quantum chemistry programs. In addition to wavepacket
propagation, Quantics can solve the time-independent Schrödinger equation for small systems and
can solve the Liouville–von-Neumann equation to propagate density matrices. The Package includes
auxiliary programs to help set up calculations and analyse the output. Quantics is a community code of
the UK Collaborative Computational Project for Quantum Dynamics (CCPQ) and the European E-CAM
project, an e-infrastructure for software development run by the Centre Européen de Calcul Atomique
et Moléculaire (CECAM). Through this it has become a framework for general dynamics codes, for
example enabling an external surface hopping code to use the Quantics input and operator interfaces.
Program summary
Program Title: Quantics
Program Files doi: http://dx.doi.org/10.17632/x9dcpc2r5c.1
Licensing provisions: LGPLv3
Programming language: Fortran90. Some Fortran77, Fortran2003, C and python.
Nature of problem: Solving the time-dependent Schrödinger equation for a set of nuclei allows a range
of physical processes to be studied including all quantum effects. This allows an experimental signal to
be given a molecular interpretation. Typical applications are scattering cross-sections or time-resolved
spectra, but also rate constants and other transport properties are possible. The exact problem to be
solved is defined by the Hamiltonian, which must be provided by the user, and the initial wavepacket,
again defined by the user. The final analysis of the evolving wavepacket then provides the experimental
signal or molecular property.
Solution method: A range of methods are possible for solving the time-evolution of a wavepacket
(see main text). These can be broadly described as basis-set methods, in which the wavepacket and
Hamiltonian are expanded in a set of functions. Various functions are possible, including grid-based
sets (DVRs and collocation), and Gaussian wavepackets. The wavepacket can then be propagated using
a variety of algorithms depending on the representation chosen. These include the full numerically-
exact solution, various versions of the multi-configurational time-dependent Hartree method and
approximate methods such as trajectory surface hopping. Full details are given in the documentation
provided with the package and in a book and a number of review articles [1,2,3].
Additional comments including restrictions and unusual features: The code has been tested on a number
of linux distributions and compilers. It works best with a bash environment and a gnu gcc / gfortran
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compiler greater than version 4.8. The code is parallelised in parts using either OpenMP or MPI. There
is a suite of test calculations to test an installation.
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1. Introduction

The Quantics Package is a suite of programs for simulating the
non-equilibrium time-evolution of a molecular system including
all quantum effects. The key aim is to solve the time-dependent
Schrödinger equation as completely and as accurately as possi-
ble for a wide range of physical processes. The time-dependent
Schrödinger equation (TDSE) is written as

i
∂

∂t
Ψ (q, t) = HΨ (q, t) (1)

= (T + V (q))Ψ (q, t) (2)

where the molecular wavefunction, Ψ , is a function of the nu-
clear coordinates, q, and the Hamiltonian operator, H , is com-
posed of the nuclear kinetic energy T and potential function V .
More generally, and especially for the simulation of photo-excited
molecules, the system is described by a set of coupled potential
surfaces and the TDSE is

i
∂

∂t
Ψ (q, t) = (T1 + W(q))Ψ (q, t) (3)

where W is a matrix of potentials and couplings in a diabatic
picture and the nuclear wavefunction Ψ is a vector with a com-
ponent associated with each state.

The TDSE is a first-order differential equation and the physical
system is specified by the coordinates and the potential function.
It is an initial value problem and so the process to be simulated
is defined by the chosen initial conditions. Typical examples of
processes are branching ratios and cross-sections for molecu-
lar scattering, photo-dissociation and photo-excitation. The latter
leads to an absorption or emission spectrum. By inclusion of a
time-dependent field in the Hamiltonian operator to simulate a
light pulse, time-resolved spectra can be simulated.

The TDSE describes a single pure state formed as a coher-
ent superposition of eigenstates. Statistical mixtures (thermalised
states) are better described using a density matrix representation
and the Liouville–von Neumann equation (LvN)

i
∂

∂t
ρ(q, q′, t) = L(ρ) (4)

where ρ(q, q′, t) = |Ψ (q, t)⟩⟨Ψ (q′, t)| is the density matrix
and L(ρ) the Liouvillian superoperator. For a closed system, the
Liouvillian is the commutator of the system Hamiltonian with the
density matrix,

L(ρ) = [H, ρ] . (5)

For open systems, the ‘‘system’’ is coupled to an implicit environ-
ment. There are a number of ways to treat this coupling, the most
common being a Lindblad operator, which changes the Liouvillian
to read

L(ρ) = [H, ρ] + i
(
VρV †

−
1
2ρV

†V −
1
2V

†Vρ
)

. (6)

In the following, the focus is on solving the TDSE, but extensions
that can be used to solve the LvN are also available in Quantics.

The most direct and accurate way to solve the TDSE is to use
a time-independent basis set to represent the wavefunction and
Hamiltonian operator, effectively discretising the problem onto
a multi-dimensional grid. The initial wavefunction is setup as a
non-stationary state, a wavepacket, that is propagated in time
using an integration scheme. The evolving wavepacket can then
be analysed to obtain the results: a property that can be related
to an experimental signal, or an expectation value that can be
related to the molecular evolution.

A numerically exact solution to the TDSE is obtained by rep-
resenting the wavepacket directly as a set of time-dependent
coefficients of the time-independent basis functions, which can
be seen as amplitudes on the grid points. This is referred to in the
following as ‘‘standard’’ wavepacket dynamics, or the standard WP
method. If there are N basis functions for each coordinate (degree
of freedom), and f degrees of freedom, the multi-dimensional
grid has N f points, and the computational effort scales exponen-
tially with system size. This restricts the solution in general to
4 or 5 degrees of freedom. To go to larger systems, the multi-
configurational time-dependent Hartree (MCTDH) method is used.
In this, the wavepacket is expressed in a set of time-dependent
basis functions, known as single-particle functions (SPFs), which
in turn are described using the time-independent primitive basis
functions. MCTDH is thus a contraction scheme and in its most
powerful form, multi-layer MCTDH (ML-MCTDH), allows the time-
evolution of wavepackets to be simulated for over 100 degrees of
freedom. The key to the MCTDH method is that the equations of
motion are variational and so convergence of the basis set results
in the numerically exact solution.

The MCTDH method in a number of variants is at the heart of
the Quantics package. The package aims to be a general purpose
code, with a user friendly interface: for most calculations the
input is entirely given in ascii text files. It is portable, being
written for the most part in standard Fortran and tested with
readily available compilers. It comes with an extensive set of
documentation and a user manual.

In this article, an overview of the code will be given. The
theory behind the algorithms has been published elsewhere and
only a brief description of the methods available is given, with
references to the literature. After a listing of the code capabilities,
a brief history of its development is given. Many people over the
years have been involved in the code development, and here the
major developments are described and credited. Unfortunately
there is not space here to credit all involved, but this is done
in the code documentation. The relationship of the package to
the Heidelberg MCTDH Package [1], from which it evolved is also
made clear. After this, in Section 4 the basic equations being
solved are given. The final sections describe the code structure
(Section 5) and the basic usage (Section 6) to give a flavour of
how the code is built up and how it can be used.
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Table 1
Main methods available in the Quantics Program.
Method Equation

solved
Basis
sets

Standard WP TDSE DVRs or FFT
MCTDH TDSE DVRs or FFT
ML-MCTDH TDSE DVRs or FFT
GMCTDH TDSE DVRs or FFT or GWPs
ML-GMCTDH TDSE DVRs or FFT or GWPs
ρMCTDH(I) LvN DVRs or FFT
ρMCTDH(II) LvN DVRs or FFT
ML-ρMCTDH(I) LvN DVRs or FFT
ML-ρMCTDH(II) LvN DVRs or FFT
ρGMCTDH(II) LvN DVRs or FFT or GWPs
ML-ρGMCTDH(II) LvN DVRs or FFT or GWPs
Standard WP TISE DVRs or FFT
vMCG TDSE GWPs
clMCG TDSE GWPs
iMCG TDSE GWPs
DD-vMCG TDSE GWPs
TSH TDSE trajectories
DD-TSH TDSE trajectories

Integration schemes Method

Chebyshev Standard WP
Second Order Differencing Standard WP
Split Operator Standard WP
Constant Mean Field (CMF) MCTDH (not ML-)
Adams–Bashforth–Moulton all MCTDH and MCG
Burlisch–Stoer all MCTDH and MCG
Runge–Kutta all MCTDH and MCG

DVRs:
Harmonic Oscillator, Sine, Cosine, Exponential, Legendre, Laguerre

2D spherical harmonic basis sets:
Spherical Harmonic FBR, Extended Legendre, 2D Legendre

2. Capabilities

The methods available in the Quantics Package to simulate
the non-equilibrium time-evolution of distinguishable particles
are listed in Table 1. In addition, to propagation in real time,
propagation in imaginary time is also available for most methods.
This procedure, known as energy relaxation, can be used to either
obtain a single eigenfunction, or a set of eigenfunctions using
a block relaxation scheme. There is also the possibility of the
direct diagonalisation of the Hamiltonian matrix in a grid-basis
to directly obtain the eigenvalues. For a full list of programs
available in the Quantics Package and their capabilities, see the
documentation that is provided with the code. This is in the form
of html files describing the codes and options, and a user guide
with a short tutorial that is provided as a pdf file.

3. History of the program

The Quantics Package started in the group of Lorenz Ceder-
baum at the University of Heidelberg. The initial code was written
by Uwe Manthe as part of his PhD to run the very first MCTDH
calculations [2,3]. This was a set of routines in Fortran77 that
required compilation for each calculation to select the relevant
potential surface, integration scheme and other options. Under
the supervision of Hans-Dieter Meyer, together with Andreas
Jäckle and Michael Beck, I put these routines together as a single
program that could select the different options and operators
using ascii input files. The program then grew into the Heidelberg
MCTDH Package [1] able to solve the time-dependent Schrödinger
equation for distinguishable particles using both the grid-based
MCTDH algorithm as well as numerically exact calculations. A key
design feature from the start was treating molecules of any size
(from diatomic to 10 atoms or more), modularity, and ease of use.

A suite of stand-alone programs to analyse the output was also
started including automatic plotting using the Gnuplot program.

The initial code included innovations for scattering calcula-
tions such as an adiabatic correction to shorten the asymptotic
grid [4] and the use of complex absorbing potentials (CAPs) to
calculate the reactive flux [5]. The filter diagonalisation time-
dependent approach to obtain the eigenvalues of a Hamiltonian
was added from the work of Michael Beck, helped by Fabien
Gatti [6,7], along with time-independent calculations diagonalis-
ing the Hamiltonian matrix. The ability to propagate a density
matrix rather than a wavepacket, including thermalisation or
dissipative environments, was added from the work of Andreas
Raab and Irene Burghardt [8,9].

One of the drawbacks of the MCTDH method is that it requires
a particular form for the Hamiltonian. For efficiency, this operator
must be written as a sum of products of one-dimensional oper-
ators. This is not generally the case for molecular potentials and
Andreas Jäckle wrote the Potfit program that automatically fits
a function into the desired form [10].

Early applications focused on scattering in the gas-phase [11]
and on surfaces [12,13]. A novel two-dimensional discrete vari-
able representation (DVR) for the rotational operator allowed
systems with total angular momentum greater than zero to be
studied [14]. The method was also used to study the other great
interest in Heidelberg: studying non-adiabatic systems with the
vibronic coupling Hamiltonian [15].

A significant breakthrough was my implementation of gen-
eral, multi-dimensional basis functions. The resulting saving in
computational effort allowed us to converge a calculation of the
absorption spectrum of pyrazine including all 24 degrees of free-
dom [15,16]. Given the exponential scaling of quantum dynamics
methods, this was a huge step forward from the 3–4 dimensional
systems that had been studied using these methods up to this
point. To ease the fitting of vibronic coupling models, the Vcham
set of programs were added to the package by Christopher Cattar-
ius, Andreas Markmann and myself [17,18]. Vcham was updated
more recently to include a range of diabatic potentials and fitting
procedures by Simon Neville and Christopher Robertson.

The next developments to be added to the package were
the use of Gaussian wavepacket basis sets in place of DVRs —
known as the GMCTDH approach. Developed mostly by Irene
Burghardt [19], this aims to break the scaling problem further.
This method, however, proved to be numerically unstable and it
took a number of years before we could get it to work reliably.
The initial interest in GMCTDH was due to the possibility of
greater efficiency in system-bath problems in which the bath is
described by a set of harmonic oscillators for which the Gaussian
functions are perfectly adapted. Later interest came from the
possibility of using it as a direct dynamics algorithm, in which
the potential surfaces are calculated on-the-fly using a quantum
chemistry code. This has been a significant part of the develop-
ment, working together with Mike Robb, Benjamin Lasorne and
Mike Bearpark first at King’s College London and then Imperial
College London [20–22].

At this point, the code was showing its age, being written
in standard Fortran77. At Birmingham, Kousik Giri then worked
with me on converting the code to Fortran90. This allowed a
better use of dynamic memory allocation (the older code uses
C-routines to allocate large blocks of memory). This code became
the Quantics Package.

The next big step forward for the capabilities of the Heidelberg
MCTDH package was the implementation of ML-MCTDH by Oriel
Vendrell [23]. This was written in Fortran95 using derived types
to elegantly enable the recursive algorithm required to code
this highly efficient method. It has been included into Quan-
tics, running faster than in the Fortran77 code due to a simpler
interface.
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Parallelisation of the MCTDH algorithm was first introduced
in the Heidelberg package by Michael Brill using pthreads [24]
and later extended to using MPI. In Quantics, we have chosen
to use the more readily available OpenMP in place of pthreads,
implemented by Gareth Richings. The MCTDH algorithm, how-
ever, is not easy to parallelise due to the interconnectivity of
the data. Only parallelisation over the terms in the Hamiltonian
has been implemented and this is effective when the potential
expansion is very long, for example in the benchmark calculations
on the Zundel cation [25]. Further improvements are required to
improve general efficiency.

Recent developments on the Quantics package have mostly
been to the Gaussian wavepacket direct dynamics methods.
Gareth Richings, Iakov Polyak and Eryn Spinlove were particularly
involved in the implementation of features such as propagation
diabatisation [26] and Hessian updating [27]. Complementary
developments have been made by Terry Frankcombe to use the
Grow methodology to produce potential surfaces from a set of
data points [28]. Recently, we have written an interface to a sur-
face hopping code from the group of Nadia Doslic [29] to provide
direct comparisons with this popular semi-classical method.

Over the years, other capabilities have been added. Time-
dependent fields can be a part of the operator to simulate di-
rectly time-resolved spectroscopic signals such as photo-electron
spectra [30]. Using this, Alex Brown and Markus Schröder imple-
mented an optimal control scheme [31], and Tom Penfold local
control [32]. A library of potential functions has been built up
and automatic spline fitting to data added by Cristina Sanz Sanz.
Most recently, we have returned to developing the density matrix
approach to include thermalisation and environmental effects,
and this has led to an implementation of multi-layer versions of
the original Raab type II density matrix scheme. This should get
around the scaling problem of density matrix methods and open
new avenues for simulations. As a Gaussian wavepacket basis can
be used, direct dynamics density matrix propagation will also be
possible.

Development has continued in Heidelberg on the original
MCTDH package led by Hans-Dieter Meyer, who has been actively
involved throughout the code development in an inspirational as
well as practical capacity. Frank Otto and Markus Schröder were,
in particular, involved in the parallelisation and general improve-
ment of this package. There are three versions. Version 8.3 is the
standard serial code for grid-based MCTDH calculations. Version
8.4 is the parallel version, and version 8.5 includes ML-MCTDH.
These are now mature, well tested codes that are available on
request. Quantics includes the functionality of all these versions
and the user interface is the same. The structures of the binary
files with output from a calculation have been changed to provide
greater flexibility, but the reading of files is backward compatible.

Throughout the development of this code, we have used revi-
sion control, first PRCS (introduced to us by Stefan Wefing), then
SVN, and now Git. A set of automatic tests (known as the Elk
Test after the car industry standard) have also been developed
to ensure that new additions do not break the code. The package
also has extensive documentation, and a user guide, the original
version of which was written by Michael Beck.

4. Solving the TDSE: Methods

The details of the algorithms implemented in Quantics are
contained in a book [33] and a number of review articles [27,34,
35]. Only a brief overview is given here of the different methods
in terms of the ansatz used along with their main properties and
citations to original papers. Equations of motion are not given.

4.1. The time-dependent Schrödinger equation

The TDSE is solved using the Dirac–Frenkel variational princi-
ple:

⟨δΨ |H − i
∂

∂t
|Ψ ⟩ = 0 . (7)

The different forms of the trial wavefunction define the methods.
The variational principle ensures that the total energy and norm
of the wavefunction should be conserved.

Standard WP Method. To solve the TDSE, the wavefunction
can be expressed as a direct product expansion in a set of (usually
one-dimensional) time-independent basis functions [36,37]:

Ψ (q, t) =

∑
j1...jf

Aj1...jf (t)χ
(1)
j1

(q1) . . . χ
(f )
jf

(qf ) , (8)

where {χ
(κ)
jκ (qκ )} are the set of functions for the κth degree of

freedom and Aj1...jf (t) the time-dependent expansion coefficients.
The basis functions are either a discrete variable representation

(DVR) [34,38], or a collocation [36]. DVRs are constructed by
diagonalising the position operator in an analytic set of functions,
such as harmonic oscillator or Legendre functions. This leads to a
set of localised functions in coordinate space in which the poten-
tial operator is diagonal, while the kinetic energy operator can
be expressed analytically in the conjugate basis function space.
A number of DVRs are included in Quantics with properties
suitable for different coordinates.

A collocation method exactly represents the wavefunction at
pre-defined grid points. The potential energy operator is again
taken as diagonal on the grid points and the kinetic energy op-
erator is evaluated by making use of a Fourier Transform to take
the wavefunction onto the conjugate momentum grid, where the
momentum is diagonal, followed by a reverse Fourier Transform.
For this reason it is referred to as an FFT basis.

The main effort in a wavepacket propagation calculation is the
need to evaluate integrals of the Hamiltonian in the basis set, i.e.

HIJ = ⟨ΦI |H|ΦJ⟩ , (9)

where ΦJ = χ
(1)
j1
. . . χ

(f )
jf

is a configuration with the multi-index J .
The combination of localised functions with easy kinetic energy
evaluation makes DVRs and collocation methods efficient basis
sets.

Both DVR and FFT bases effectively discretise the problem and
methods using these are referred to as grid-based. The wave-
function expansion coefficients in the standard WP method are
therefore amplitudes at the grid points. The standard WP method
is simple and, as long as there are enough grid points, a numeri-
cally exact solution of the TDSE. It can also be used together with
powerful integration schemes, such as split-operator or Cheby-
shev, to allow efficient propagation. It does, however, suffer from
the exponential increase in the number of expansion coefficients
with system size, i.e.

computational effort ∼ N f , (10)

where N is the basis set size for each degree of freedom. This
limits the standard WP method to 3 or 4 degrees of freedom
without the use of advanced DVR basis sets or grid pruning
techniques [39].

MCTDH. In contrast to the standard WP method, the MCTDH
wavefunction is expanded in a time-dependent basis, referred to
as single-particle functions (SPFs) [2,34]

Ψ (q, t) =

∑
j1...jp

Aj1...jp (t)ϕ
(1)
j1

(Q1, t) . . . ϕ
(p)
jp (Qp, t) , (11)
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which are in turn expanded in a time-independent DVR or FFT
basis which is referred to as the primitive basis

ϕ
(κ)
j (Qκ , t) =

∑
i

aij(t)χ
(κ)
i (Qκ ) . (12)

The variational nature of the SPFs allows a more compact wave-
function expansion as fewer basis functions are needed than
grid-points to follow the evolving wavepacket. Convergence on
the numerically exact result is also guaranteed.

A key feature is that the SPFs can be multi-dimensional,
i.e. rather than using f sets of one-dimensional functions, p sets
of d-dimensional SPFs with coordinates Q1 = (q1, q2, . . . , qd) are
used. This reduces the exponent for the scaling of the number of
coefficients. The scaling is

effort ∼ np
+ pnNd , (13)

where n is the SPF basis set size and N the underlying primitive
basis set size. The first term on the right hand side of Eq. (13) is
the number of expansion coefficients, while the second term is
the size of the d-dimensional grids describing the SPFs. There is
thus an optimum balance between combining degrees of freedom
together in a particle to reduce the first term, while not combin-
ing too many together to prevent the second term becoming too
large. If all degrees of freedom are combined together the multi-
dimensional SPF becomes the wavefunction of the standard WP
method.

MCTDH can be used for systems with up to 20 degrees of
freedom. The main bottleneck is the fact that, unlike in the
standard WP method, the Hamiltonian matrix elements are time-
dependent and need to be re-evaluated at each time step. This is
prohibitively expensive unless the potential is a sum of products
with the same (or lower) dimensions as the SPFs, i.e.

V (q1, . . . , qf ) =

∑
r

crh(1)
r (Q1) . . . h(p)

r (Qp) , (14)

which means that only one-dimensional integrals are required.
A potential that is not a priori in this form can be efficiently
fit using the Potfit program that implements a procedure to
optimally describe a potential in the desired sum of products
form [10]. Alternatively, the Vcham programs can be used to fit a
vibronic coupling model potential suitable for the description of
non-adiabatic photophysics [17].

For systems with more than one electronic state, two different
approaches are possible. In themulti-set formalism, a different set
of SPFs is used for each electronic state:

Ψ (q, t) =

∑
s

∑
js1...j

s
f

A(s)
js1...j

s
p
(t)ϕ(s,1)

j1
(Q1, t) . . . ϕ

(s,p)
jp (Qp, t) , (15)

where s is the index over electronic states. In contrast, in the
single-set formalism only one set of SPFs is used and the electronic
states are explicitly included as a vector

Ψ (q, t) =

∑
s

∑
j1...jp

Aj1...jp,s(t)ϕ
(1)
j1

(Q1, t) . . . ϕ
(p)
jp (Qp, t) |s⟩ . (16)

The multi-set formalism requires more SPFs, but as they can
adapt optimally to each state fewer configurations in total are
required which can save effort.

ML-MCTDH. Larger systems can be treated by realising that
multi-dimensional functions can be treated in an MCTDH form.
This leads to a recursive layering structure, multi-layer MCTDH
[23,40–42]

Ψ (q, t) =

∑
j1...jp

A1
j1...jp (t)ϕ

(1:1)
j1

(Q 1
1 , t) . . . ϕ

(1:p)
jp (Q 1

p , t)

ϕ1:κ
m (Q1

κ , t) =

∑
j1...jdκ

A2:κ
m:j1...jdκ

(t)ϕ(2:κ,1)
j1

(Q 2:κ
1 , t) . . . ϕ(2:κ,dκ )

jdκ
(Q 2:κ

dκ , t)

...
... (17)

ϕl:κ
m (Ql

κ , t) =

∑
j1...jdκ

Al+1:κ
m:j1...jdκ

(t)ϕ(l+1:κ,1)
j1

(Q l+1:κ
1 , t) . . .

ϕ
(l+1:κ,dκ )
jdκ

(Q l+1:κ
dκ , t)

where there is new superscript, l, referring to the layer. The
lowest layer of SPFs is described by a grid as in MCTDH. Only the
single-set formalism is possible with ML-MCTDH.

ML-MCTDH provides a very powerful tensor contraction of a
multi-dimensional wavefunction and it has been used for cal-
culations with hundreds of degrees of freedom [43,44]. In the
Quantics implementation, all primitive basis sets and Hamil-
tonians that can be used with MCTDH can also be used with
ML-MCTDH. The main drawback of the method is that it can be
difficult to converge calculations, as all sets of functions in the
layers need to be balanced. An initial contraction scheme also
needs to be decided on, known as a tree structure. Poor choices
lead to calculations that are harder to converge. The variational
nature of the method, however, ensures that convergence leads
to the numerically exact result.

GMCTDH. Rather than using grid-based SPFs, it is possible to
use parametrised basis functions for some of the particles and
propagate the parameters instead [19]

Ψ (q, t) =

∑
j1...jp

Aj1...jp (t)Ψ (q, t) = ϕ
(1)
j1

(Q1, t) . . . ϕ
(m)
jm (Qm, t)

× g (m+1)
jm+1

(Q1, t) . . . g
(p)
jp (Qp, t) , (18)

where g (κ) are parametrised functions. While the formalism is
general, at present Gaussian basis functions (GBF) have been
implemented with the form

g(Q, t) = exp(QTAQ + BTQ + C) (19)

with the complex variational parameters A,B, C. If the width ma-
trix, A, is kept fixed, and these frozen Gaussians remain separable,
these basis functions can be related to one-dimensional Gaussian
wavepackets

g(q, t) = exp(−σ (q − q0)2 + ip0(q − q0) + iγ ) (20)

with width σ , centre q0, momenta p0 and phase γ . The use
of GBFs has two advantages over flexible grid-based SPFs. The
first is that, while more basis functions will be required for
convergence, the number of parameters that must be propagated
will be reduced. The second is that as the basis functions are
localised, information on the potential is only needed around
the centre of the GBFs. Thus, for example, the integrals of an
operator in the Gaussian basis can be analytically obtained using
the local harmonic approximation (LHA) in which the potential is
expanded to second order around the GBF centres. This allows
general potential functions to be used, i.e. those not in sum of
products form Eq. (14), at the expense of no longer having exact
integrals.

The GMCTDH equations of motion are numerically unstable
due to the non-orthogonal nature of the basis, which can be
overcomplete. This can lead to linear dependencies with corre-
sponding integrator problems. The method, however, has been
shown to be very efficient for problems in which a quantum
system is connected to a bath of harmonic oscillators [45,46].

vMCG. In the limit of only multi-dimensional frozen GBFs, the
wavefunction ansatz is a superposition of GWPs [47]

Ψ (q, t) =

∑
j

Ajgj(q, t) (21)

This is known as the variational multiconfiguration Gaussian
method [27,47]. It can be related to other GWP approaches such
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as Multiple Spawning [48] or Coherent Coupled States [49]. It can
be shown that the variational equations of motion for the GWP
centres in vMCG are trajectories that can be written as a classical
part and a coupled ‘‘quantum’’ part. This coupling leads to much
faster convergence than other GWP methods in which the GWPs
follow classical trajectories [27].

clMCG. If the coupling between GWPs in the vMCG method
is ignored, then the basis functions follow classical trajectories.
clMCG is computationally faster and numerically more stable
than vMCG, but has much slower convergence on the full quan-
tum mechanical result and is dependent on the initial conditions
chosen for a calculation [50].

iMCG. In the simplest variant of the method, the evolving
wavefunction is represented by a superposition of functions and
the initial weights of the GWPs are kept fixed. The indepen-
dent multi-configurational Gaussian method is thus equivalent to
solving the TDSE with a swarm of classical trajectories [50].

All of the MCG methods can be used in a direct dynamics
mode [20,51,52]. In this, the potential functions are evaluated on-
the-fly only when required using quantum chemistry programs.
The methods are then referred to as DD-vMCG, DD-clMCG and
DD-iMCG, respectively. The Quantics program has interfaces to
a number of quantum chemistry codes including Gaussian [53],
Molpro [54], Qchem [55] and Molcas [56].

4.2. The Liouville von Neumann equation

The LvN is solved using the Hilbert–Schmidt scalar product in
place of the usual Hilbert space scalar product

⟨⟨A|B⟩⟩ = TrA†B (22)

and the associated Dirac–Frankel variational principle that reads

⟨⟨δρ|iρ̇ − L(ρ)⟩⟩ = 0 , (23)

where δρ are variations in a trial density matrix [8]. There are
two basic different trial density operators.
ρMCTDH (I). The type I density operators have the form

ρ(q, q′, t) =

∑
j1...jp

Aj1...jp (t)σ
(1)
j1

(Q1,Q ′

1, t) . . . σ
(p)
jp (Qp,Q ′

p, t) , (24)

where σ (κ) are single-particle density operators (SPDOs). The varia-
tional principle then provides equations of motion for the expan-
sion coefficients and the SPDOs.
ρMCTDH (II). In contrast, type II density operators have the

form

ρ(q, q′, t) =

∑
j1...jp,k1...kp

Aj1...jp,k1...kp (t)|ϕ
(1)
j1

(Q1, t)⟩⟨ϕ
(1)
k1

(Q ′

1, t)| . . .

× |ϕ
(p)
jp (Qp, t)⟩⟨ϕ

(p)
kp (Q

′

p, t)| (25)

where ϕ(κ) are analogous to the usual SPFs of MCTDH.
The properties of ρMCTDH(I) and ρMCTDH(II) have been eval-

uated [9,57] and while type(I) has the advantage of a quicker
convergence, particularly for thermalised systems, it does not
retain the total energy or norm by construction. Density matrix
propagation requires significantly more effort than wavepacket
propagation, but in the Quantics code it may be possible to use
the multi-layer formalism or GWP basis sets to alleviate this.

4.3. The time-independent Schrödinger equation

For small systems (2–3 degrees of freedom), it is possible
to obtain the eigenvalues of a Hamiltonian by diagonalising its
matrix representation in a DVR. For this the Lanczos algorithm
is used. In addition, a number of ways to obtain eigenvalues are

Table 2
Main programs in the Quantics Package.
Program Description

quantics Main program solving the TDSE, LvN and TISE for a
wide range of Hamiltonians and initial conditions.

potfit Transform a potential function into a sum of product
form using the potfit algorithm [10]

vcham Sets up and reads output from quantum chemistry
calculations to fit the parameters for a Vibronic
Coupling Hamiltonian [17]

filter Employs filter diagonalisation to obtain eigenvalues of a
Hamiltonian using time-dependent propagation [6]

fdc As filter, but for complex Hamiltonians

analyse This is a set of stand-alone programs (presently 40
codes) that can analyse the output from quantics. Using
the free gnuplot program to provide visualisation, these
programs can perform operations such as checking
convergence by analysing grid and basis function
populations; plotting the potential surfaces and evolving
wavepacket; calculating spectra; analysing the database
from a DD calculation; Etc.

possible based on propagation methods, and thus able to use the
power of the MCTDH wavefunction form.

Energy Relaxation. If a wavepacket is propagated in imagi-
nary time, it → τ , and at time τ the wavepacket can be expanded
in the eigenfunctions of the Hamiltonian as:

Ψ (τ ) =

∑
i

aiψi exp−Eiτ (26)

where Ei are the eigenvalues and a1 the contribution of the
eigenstate to the initial wavepacket. It can be seen that the contri-
bution of an eigenfunction decays exponentially with (imaginary)
time to leave the ground-state eigenfunction at long-times. The
algorithm is written to retain normalisation [34].

Block relaxation. To obtain excited-states, i.e. eigenstates
other than the ground-state, it is possible to use improved relax-
ation [58]. In this, a combination of imaginary time propagation
and diagonalisation of the Hamiltonian in the time-dependent ba-
sis allows a set of states to be obtained. The Davidson algorithm is
used for the diagonalisation of the low-dimensional Hamiltonian.

Filter diagonalisation. The final method that can be used
to obtain eigenenergies uses short real-time propagations and
diagonalisation to ‘‘filter’’ out the eigenenergies in a pre-defined
energy window [59].

5. Code structure

The Quantics Package is a set of programs, the main ones of
which are listed in Table 2. The structure of the central quantics
code is shown in Fig. 1 and demonstrates the general philosophy
of the programs. The code is broken up into a set of independent
modules representing the different stages of a quantum dynamics
simulation. Communication between the modules is via files,
allowing calculations to be stopped and started at the different
stages. The input is given in, usually two, ascii files: These are
described below in Section 6. The basic parsing of the input is
made in the eingabe module (eingabe is german for input). This
defines the type of calculation to be made, where to find the
different input required, and basic parameters such as the start
and final times for a propagation, of number of iterations for a
Hamiltonian matrix diagonalisation.

A quantum dynamics calculation then requires four stages,
each of which is dealt with by a different module.

1. The module rundvr ‘‘generates the DVR’’. Here, the sys-
tem coordinates are defined, setting the number of nuclear
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Fig. 1. Structure of the main quantics program. Square boxes represent the code modules. The ovals receiving output from the modules are files, while the ovals
providing input to the modules are either files or sections in the input file.

degrees of freedom and number of electronic states. For
each degree of freedom, a primitive basis set is defined
and the integrals and grid points required to represent a
Hamiltonian are calculated. Results are stored in the file
dvr.

2. The module runoper ‘‘generates the operator’’. Here the
operator information is parsed from the input, and the dvr
file read to get the information on the system. An internal
table is set up linking the operators in the terms defining the
Hamiltonian. The operators are then given types. For exam-
ple, a kinetic energy operator is usually a real matrix, and a
term in the potential a real vector. Finally the operators are
calculated. The information is then stored in the file oper.
Any combinations of the coordinates into multi-dimensional
‘‘particles’’ in MCTDH calculations are automatically taken
care of. The code also tries to optimally combine terms in the
Hamiltonian. In addition to the Hamiltonian other operators
are set up in an analogous way. These may be required to
set up the initial wavefunction or for the analysis.

3. The module runinwf ‘‘generates the initial wavefunction’’.
It can also generate density matrices. The module reads from
the input information on how to build the initial wavefunc-
tion. The dvr and oper files are also read. The result from
a previous calculation, e.g. a ground-state vibrational wave-
function from an energy relaxation calculation. If required
an operator is applied to the initial guess, e.g. a dipole mo-
ment to provide initial excitation. The initial wavefunction
is written to the restart file.

4. The module runprop reads the dvr, oper and restart
files, and selects the appropriate routines for the asked for
propagation. Various files are written with the asked for
information. for example the wavefunction stored in the file
psi at user specified intervals, the autocorrelation function
is stored in auto, and various values such as the energy,
norm, expectation value along each coordinate and diabatic
state populations in check. These files are in general binary,
and can be read by the analysis programs.

The package contains a large number of functions in a library
to build up operators. These operators are all indexed and given
a name so that they can be found after parsing the operators
defined in the ascii input. Operators in the library include both
simple operators such as ∂2

∂x2
, xn, sin(x) as well as more com-

plicated operators for angular momenta. Potential functions for
particular molecular systems can be added via a interface. The

interface is then available to all the programs in the package
so that, for example a defined potential surface can be plotted,
or a multi-dimensional potential function broken into a sum of
products form using the potfit program.

Direct dynamics calculations, in which the potentials are cal-
culated on the fly, store the information from the quantum chem-
istry calculations in a database (DB). There is a low-level interface
to quantum chemistry codes that enables new codes to be used
with minimal coding. During a propagation, quantics looks first
in the database as to whether the potential surfaces have already
been calculated at an appropriate point (i.e. nearby in space to
the present point). Only if no suitable points are present will
a quantum chemistry calculation be performed. The interface
sets up the calculation in an ascii file from a template, runs the
calculation and reads the output, storing the new point in the DB.
The DB at the end of a calculation is then a representation of the
potential surfaces and can be further analysed.

The program structure is designed to be able to provide the
input to other programs. For example, the DVR information could
be used by reading the dvr file. As a demonstration of the
interaction between the package and an external program, an
interface has been written to a surface hopping code from the
group of Nadja Doslic in Zagreb. Using keywords, the quantics
code generates an operator and then calls the Zagreb surface hop-
ping code, which is entirely a stand-alone program as provided by
the authors. When a potential energy and gradient is required to
drive the trajectories in the swarm, the quantics potential rou-
tines are called. These can distinguish between analytic potentials
and direct dynamics potentials, so the Zagreb surface hopping is
able to use any operator on an even footing to the quantics
own propagation methods. At the end of the calculation a short
interface then read the surface hopping output and saves it in
quantics format to be analysed by the analysis programs.
The use of the same DB in either a vMCG or TSH direct dynamics
calculations is shown in Fig. 2.

6. Code usage

The code is driven by an ascii input file. Illustrative examples
are shown in Figs. 3, 4 and 7 to give a flavour of how a calculation
is set up and controlled. For the most part, the text is free-format
and case insensitive providing keywords and options. Comments
can be added to the file, started with a # symbol. The file is
divided into sections, which can go in any order. Each section
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Fig. 2. Communication used by the direct dynamics part of the quantics program via a central database.

Table 3
Sections in a quantics input file.
RUN-SECTION: Type of calculation to be made
PRIMITIVE-BASIS-SECTION: The coordinates, no. grid points etc.
SPF-BASIS-SECTION: The no. of MCTDH basis functions
OPERATOR-SECTION: File containing the operator
INIT_WF-BASIS-SECTION: The initial wavefunction
INTEGRATOR-SECTION: Details of the integration scheme

reflects a part of a quantum dynamics calculation and are bound
by the text XXX-section and end-XXX-section. The most
usual sections are listed in Table 3. All the sections and keywords
are listed in the package documentation.

The run-section defines the overall calculation, with infor-
mation on the type of calculation, initial time, final time and
the output files to be opened. An important keyword is name
= string. This specifies a directory (the ‘‘name’’ directory) into
which all the output files from a calculation are written. The
output files have simple names such as psi or gridpop rather
than the more common use of a filestem with filetype. The system
is then defined in the primitive-basis-section. Here, labels
are given to each degree of freedom in a list, one degree of
freedom per line. The labels are a primary descriptor and any
short ascii string can be used. These labels are used in subsequent
sections to define the degrees of freedom, and are also used in the
output.

In this section, a primitive basis is also defined for each degree
of freedom. In Fig. 3 a three-dimensional calculation is specified
with degrees of freedom labelled rd, rv and theta. For the rd
coordinate an FFT grid is used with 68 equidistant points running
from 1.0 au to 9.04 au. For the rv coordinate, a sine DVR is
used with 48 points from 0.6 au to 6.24 au, while for the theta
coordinate a Legendre DVR is used with 31 grid points based on
the even Legendre functions. In Fig. 4, four nuclear degrees of
freedom are specified, each using a harmonic oscillator DVR with
different numbers of grid points. In addition in this calculation, an
electronic ‘‘degree of freedom’’ is specified defining 2 electronic
states.

In the spf-basis-section the number of single-particle
functions (SPFs) are defined, as required for an MCTDH calcu-
lation. The degree of freedom labels are used to map the SPF
basis onto the primitive basis. In Fig. 4 a ‘‘multi-set’’ basis is used,

with different functions defining each electronic state. Degrees
of freedom can also be combined together in this section and in
Fig. 4 the degrees of freedom v1 and v9a are treated together
using two-dimensional SPFs. If degrees of freedom specified in
the primitive-basis-section are not listed in this section,
they are not included in the dynamical calculation, i.e. a cut
through the potential surfaces defined by the full system is run.
The coordinate for the missing degrees of freedom is set to zero
unless otherwise specified using a ‘‘point’’ DVR, which is a specific
single point.

The Hamiltonian (and other operators) are usually specified in
a separate file. The file name is given in the operator-section.
This file is described below, and examples shown in Figs. 5 and
6. Any changes to the parameters or operators in this file can
be given here meaning that different calculations, for example
changing the mass of an atom to change an isotope, can be run
without editing the operator file. In Fig. 3 a complex absorbing
potential (CAP) along the degree of freedom rd is added to
remove the outgoing flux.

The initial SPFs are defined in the init_wf-section. Various
ways of generating this are possible. In Fig. 4 the initial SPFs are
harmonic oscillator eigenfunctions for each degree of freedom. In
Fig. 3, the initial SPFs for rd are similar to harmonic oscillator
functions (Hermite polynomials based on a Gaussian function),
while for rv a set of eigenfunctions from a one-dimensional
operator are used. This operator is specified in the operator file
along with the Hamiltonian (see below). The final, theta, degree
of freedom uses Legendre functions.

This information is used to generate the initial wavefunction.
For an MCTDH calculation, a vector for the expansion coefficients
is set up with the vector index being the multi-index for a con-
figuration of SPFs. Unless otherwise specified, the first coefficient
is given a value of 1.0 and all other coefficients are set to zero. In
this way, the initial wavepacket is specified as a product of the
first SPFs for each degree of freedom. Thus in Fig. 4 the initial
wavepacket is a simple separable harmonic oscillator ground-
state function (a Gaussian) along each degree of freedom. The
initial electronic state is chosen to be the second. This thus sim-
ulates a vertical excitation of the ground-state wavefunction in
the harmonic approximation. If a numerically exact calculation is
performed, the initial wavepacket is set up by multiplying out the
first SPFs for each degree of freedom on the full multidimensional
grid. The coefficient vector is now a single number.
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Fig. 3. Example input file for a calculation of H + H2 scattering in Jacobi coordinates.

In addition to building the initial wavefunction as described
above, it is also possible to read the wavefunction from a previ-
ous calculation, such as the ground-state vibronic wavefunction
from an energy relaxation calculation. Operators, such as a dipole
operator, can also be defined and applied to an initial guess before
the propagation begins.

The (optional) integrator-section defines the integrator
to be used and the associated parameters. Defaults are given for
any missing parameters. The input is finished with an end-input
statement.

The files defining the operators for these calculations are
shown in Figs. 5 and 6. The HAMILTONIAN-SECTION in both files
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Fig. 4. Example input file for a calculation of the absorption spectrum of pyrazine in normal mode coordinates.

defines the Hamiltonian. The operator is coded in a table where
each row specifies the term in the operator expansion, and each
column specifies the factor for a degree of freedom. This follows
the idea that the operator is specified as a sum of products

H =

∑
r

crh(1)
r (q1)h(2)

r (q2)h(3)
r (q3) . . . (27)

The line beginning modes defines the order of the degrees of free-
dom in the product. The first column is the expansion coefficients.

As described above in Section 5, quantics has a number of
built in operators. Other parameters are defined in the
PARAMETER-SECTION, where units such as H-mass, Angstrom
or cm-1 can be used. In Fig. 5, the kinetic energy operator in

Jacobi coordinates is coded. This can be written:

T =

(
1

2µRR2 +
1

2µr r2

)
j2 −

1
2µR

∂2

∂R2 −
1

2µr

∂2

∂r2
(28)

where R is the scattering coordinate and r the diatomic bond
length, with reduced masses µR and µr , respectively. j is the
angular momentum operator for the rotation of the diatomic
relative to the scattering coordinate. The potential surface for H
+ H2 system is defined by the label V. This relates to the operator
defined in the LABELS-SECTION as the LSTH surface in Jacobi
coordinates.

In Fig. 6, the Hamiltonian is a four dimensional linear vibronic
coupling model in mass-frequency scaled coordinates. The table
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Fig. 5. Input file defining the operators in a calculation for the scattering of H+H2 .

codes the operator

H =

∑
i

ωi

2

(
−
∂

∂q2i
+ q2i

)(
1 0
0 1

)
+

(
−∆ 0
0 ∆

)
(29)

+

∑
i=6a,1a,9a

(
κ
(1)
i qi 0
0 κ

(2)
i qi

)
+

(
0 λq10a

λq10a 0

)
(30)

where ωi is the frequency of an oscillator, 2∆ the energy gap
between the states at the Franck–Condon point, and κ (α)

i and λ
the coupling parameters.

In addition to the Hamiltonian, other operators can be defined.
For example, in the HAMILTONIAN-SECTION_H2 section in Fig. 5,
a one-dimensional H2 operator is set up and given a label H2.
This is used in the INIT_WF-SECTION of the input file in Fig. 3
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Fig. 6. Input file defining the vibronic coupling Hamiltonian for a calculation of the absorption spectrum of pyrazine.

to define the initial SPFs for the rv degree of freedom using the
eigenfunctions of this operator.

In Fig. 7 an alternative format input for a direct dynamics
calculation is shown. While it is possible to use the sections
described so far, it is more intuitive to input the information
on the system based on the atoms and Cartesian coordinates

used in the associated quantum chemistry calculation. In place
of the PRIMITIVE-BASIS-SECTION, SPF-BASIS-SECTION and
INIT_WF-SECTION, an INITIAL-GEOMETRY-SECTION is used.
This defines the atoms and coordinates of the geometry around
which the initial wavepacket is based. This calculation runs in
normal mode coordinates, specified by the direct = nmodes
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Fig. 7. Example input file for a direct dynamics calculation of the photoexcitation of water using normal mode coordinates.

keyword in the RUN-SECTION. As a result, the labels for the
normal modes along with the initial coordinates and frequencies
are given in the nmode to end-nmode block.

The information required for the direct dynamics is given in
the DIRDYN-SECTION. The quantum chemistry program to be
used (Molpro) along with the method (CASSCF) are specified.
Other parameters control how often new points are stored in the
database (DB), which is stored in the directory specified by the
data keyword. The options controlling the Molpro calculation
are controlled using a template file, shown in Fig. 8. This is put in
the DB directory and used to create the Molpro input file.

7. Installation and testing

The package is installed using a script, install_quantics,
found in the install directory. On a standard linux installation
(e.g. Opensuse, Ubuntu or Debian) with a gfortran or in-
tel compiler the package should install automatically accepting
the defaults of the script. The installation configuration can be

changed by altering the configuration files, as described in the
documentation. While the code is complete, it is possible to
link to external BLAS and LAPACK for better performance. It is
also possible to compile different versions of the code (e.g. se-
rial, OpenMP, or different compilers), which then obtain a type,
e.g. quantics.omp or quantics.intel.

To use the package, the environment variable $QUANTICS_DIR
needs to be set, which points to the root directory of the in-
stallation. By default, the installation script writes this to the
.bashrc file. Once installed, the test suite can be run by typing
elk_test_gen in a new directory. If all the tests run without
any error messages, the package is ready. The documentation can
be found by pointing a web browser to $QUANTICS_DIR/doc/
index.html. This gives access to a set of pages with descriptions
of the programs and options. The installation procedure also com-
piles the user manual, which can also be accessed from this index
page. This contains a tutorial, as well as detailed descriptions of
how to use the code.
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Fig. 8. Part of a direct dynamics template file for a 4-state calculation on water using Molpro to obtain the potential surfaces at the CASSCF level of theory. The
directives for only 2 states are shown.
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